4.7 Article

Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b

期刊

MOLECULAR THERAPY
卷 25, 期 2, 页码 368-378

出版社

CELL PRESS
DOI: 10.1016/j.ymthe.2016.11.004

关键词

-

资金

  1. NIH/NCI [RO1CA138734]
  2. Sontag Foundation Distinguished Scientist Award
  3. Brain Science Foundation

向作者/读者索取更多资源

Glioblastoma (GBM) brain tumor remains among the most lethal and incurable human diseases. Oncogenic microRNA-10b (miR-10b) is strongly and universally upregulated in GBM, and its inhibition by antisense oligonucleotides (ASOs) reduces the growth of heterogeneous glioma cells; therefore, miR-10b represents a unique therapeutic target for GBM. Here we explored the effects of miR-10b gene editing on GBM. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, we investigated effects of miR-10b gene editing on the growth of cultured human glioma cells, tumor- initiating stem-like cells, and mouse GBM xenografts, as well as the oncogene-induced transformation of normal astrocytes. We show that GBM is strictly addicted to miR-10b and that miR-10b gene ablation is lethal for glioma cell cultures and established intracranial tumors. miR-10b loss-of-function mutations lead to the death of glioma, but not other cancer cell lines. We have not detected escaped proliferative clones of GBM cells edited in the miR-10b locus. Finally, neoplastic transformation of normal astrocytes was abolished by the miR-10b-editing vectors. This study demonstrates the feasibility of gene editing for brain tumors in vivo and suggests virus-mediated miR-10b gene ablation as a promising therapeutic approach that permanently eliminates the key regulator essential for tumor growth and survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据