4.4 Article

Tile Drainage as a Hydrologic Pathway for Phosphorus Export from an Agricultural Subwatershed

期刊

JOURNAL OF ENVIRONMENTAL QUALITY
卷 48, 期 1, 页码 64-72

出版社

WILEY
DOI: 10.2134/jeq2018.03.0104

关键词

-

资金

  1. Partnership Program on Cyanobacteria of the Fonds de recherch sur la nature et les technologies du Quebec
  2. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Cyanobacteria growth in Missisquoi Bay of Lake Champlain is triggered by the P load carried by tributaries in surrounding watersheds where agriculture is a dominant land use. The objective of this study was to apportion the total P (TP) load in streamflow from an agricultural subwatershed into distinct hydrologic pathways: groundwater resurgence, surface runoff, and tile drainage components (matrix flow and preferential flow). Stream discharge during peak flow was separated into these four components using electrical conductivity (EC)discharge relationships developed from the stream water EC at the subwatershed outlet and from EC values of surface runoff and tile drain water in 10 fields within the subwatershed. The four-component hydrograph model revealed that 46 to 67% of the TP load at the outlet originated from surface runoff during peak flow. Preferential flow was responsible for most of the particulate P and dissolved reactive P loads lost through tile drainage. Groundwater resurgence was a minor source of TP, whereas other sources such as streambank erosion and resuspended sediments contributed up to 21% of the TP load and from 36 to 41% of the particulate P load at the subwatershed outlet. This work confirms that tile drainage contributes to the TP load in agricultural subwatersheds in the Missisquoi Bay region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据