4.7 Article

Producing Designer Oils in Industrial Microalgae by Rational Modulation of Co-evolving Type-2 Diacylglycerol Acyltransferases

期刊

MOLECULAR PLANT
卷 10, 期 12, 页码 1523-1539

出版社

CELL PRESS
DOI: 10.1016/j.molp.2017.10.011

关键词

biofuels; degree of unsaturation; genetic engineering; diacylglycerol acyltransferase; Nannochloropsis

资金

  1. Natural Science Foundation of China [31425002, 31600059, 31571807, 31401116]
  2. Chinese Academy of Sciences [KSZD-EW-Z-017, ZDRW-ZS-2016-3]
  3. Natural Science Foundation of Shandong [ZR2015CQ003]
  4. U.S. National Science Foundation [CBET-1511939]
  5. U.S. Office of Naval Research [N00014-15-1-2219]
  6. Directorate For Engineering
  7. Div Of Chem, Bioeng, Env, & Transp Sys [1511939] Funding Source: National Science Foundation

向作者/读者索取更多资源

Microalgal oils, depending on their degree of unsaturation, can be utilized as either nutritional supplements or fuels; thus, a feedstock with genetically designed and tunable degree of unsaturation is desirable to maximize process efficiency and product versatility. Systematic profiling of ex vivo (in yeast), in vitro, and in vivo activities of type-2 diacylglycerol acyltransferases in Nannochloropsis oceanica (NoDGAT2s or NoDGTTs), via reverse genetics, revealed that NoDGAT2A prefers saturated fatty acids (SFAs), NoDGAT2D prefers monounsaturated fatty acids (MUFAs), and NoDGAT2C exhibits the strongest activity toward polyunsaturated fatty acids (PUFAs). As NoDGAT2A, 2C, and 2D originated from the green alga, red alga, and eukaryotic host ancestral participants of secondary endosymbiosis, respectively, a mechanistic model of oleaginousness was unveiled, in which the indigenous and adopted NoDGAT2s formulated functional complementarity and specific transcript abundance ratio that underlie a rigid SFA: MUFA:PUFA hierarchy in triacylglycerol (TAG). By rationally modulating the ratio of NoDGAT2A:2C:2D transcripts, a bank of N. oceanica strains optimized for nutritional supplement or fuel production with a wide range of degree of unsaturation were created, in which proportion of SFAs, MUFAs, and PUFAs in TAG varied by 1.3-, 3.7-, and 11.2-fold, respectively. This established a novel strategy to simultaneously improve productivity and quality of oils from industrial microalgae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据