4.7 Article

Nonautonomous driving induces stability in network of identical oscillators

期刊

PHYSICAL REVIEW E
卷 99, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.012309

关键词

-

资金

  1. EU's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant [642563]
  2. Engineering and Physical Sciences Research Council (EPSRC), UK [EP/M006298/1]
  3. Marie Curie Actions (MSCA) [642563] Funding Source: Marie Curie Actions (MSCA)
  4. EPSRC [EP/M006298/1] Funding Source: UKRI

向作者/读者索取更多资源

Nonautonomous driving of an oscillator has been shown to enlarge the Arnold tongue in parameter space, but little is known about the analogous effect for a network of oscillators. To test the hypothesis that deterministic nonautonomous perturbation is a good candidate for stabilizing complex dynamics, we consider a network of identical phase oscillators driven by an oscillator with a slowly time-varying frequency. We investigate both the short- and long-term stability of the synchronous solutions of this nonautonomous system. For attractive couplings we show that the region of stability grows as the amplitude of the frequency modulation is increased, through the birth of an intermittent synchronization regime. For repulsive couplings, we propose a control strategy to stabilize the dynamics by altering very slightly the network topology. We also show how, without changing the topology, time-variability in the driving frequency can itself stabilize the dynamics. As a byproduct of the analysis, we observe chimeralike states. We conclude that time-variability-induced stability phenomena are also present in networks, reinforcing the idea that this is a quite realistic scenario for living systems to use in maintaining their functioning in the face of ongoing perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据