4.7 Article

Reduction in Brain Heparan Sulfate with Systemic Administration of an IgG Trojan Horse-Sulfamidase Fusion Protein in the Mucopolysaccharidosis Type IIIA Mouse

期刊

MOLECULAR PHARMACEUTICS
卷 15, 期 2, 页码 602-608

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.7b00958

关键词

blood-brain barrier; Sanfilippo A syndrome; IgG fusion protein; lysosomal enzyme; sulfamidase; transferrin receptor; Rhesus monkey; mouse

向作者/读者索取更多资源

Mucopolysaccharidosis Type IIIA (MPSIIIA), also known as Sanfilippo A syndrome, is an inherited neurodegenerative disease caused by mutations in the lysosomal enzyme, N-sulfoglucosamine sulfohydrolase (SGSH), also known as sulfamidase. Mutations in the SGSH enzyme, the only mammalian heparan N-sulfatase, cause accumulation of lysosomal inclusion bodies in brain cells comprising heparan sulfate (HS) glycosamino-glycans (GAGS). Treatment of MPSIIIA with intravenous recombinant SGSH is not possible because this large molecule does not cross the blood-brain barrier (BBB). BBB penetration by SGSH was enabled in the present study by re-engineering this enzyme as an IgG-SGSH fusion protein, where the IgG domain is a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), designated the cTfRMAb. The IgG domain of the fusion protein acts as a molecular Trojan horse to deliver the enzyme into brain via transport on the endogenous BBB TfR. The cTfRMAb-SGSH fusion protein bound to the mouse TfR. with high affinity, ED50 = 0.74 +/- 0.07 nM, and retained high SGSH enzyme activity, 10 043 +/- 1003 units/mg protein, which is comparable to recombinant human SGSH. Male and female MPSIIIA mice, null for the SGSH enzyme, were treated for 6 weeks with thrice-weekly intraperitoneal injections of vehicle, 5 mg/kg of the cTfRMAb alone, or 5 mg/kg of the cTfRMAb-SGSH fusion protein, starting at the age of 2 weeks, and were euthanized 1 week after the last injection. Brain and liver HS, as determined by liquid chromatography-mass spectrometry, were elevated 30-fold and 36-fold, respectively, in the MPSIIIA mouse. Treatment of the mice with the cTfRMAb-SGSH fusion protein caused a 70% and 85% reduction in brain and liver HS, respectively. The reduction in brain HS was associated with a 28% increase in latency on the rotarod test of motor activity in male mice. The mice exhibited no injection related reactions, and only a low titer end of study antidrug antibody response was observed. In conclusion, substantial reductions in brain pathologic GAGs in a murine model of MPSIIIA are produced by chronic systemic administration of an IgG-SGSH fusion protein engineered to penetrate the BBB via receptor-mediated transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据