4.6 Article

The Role of Autophagy in the Correlation Between Neuron Damage and Cognitive Impairment in Rat Chronic Cerebral Hypoperfusion

期刊

MOLECULAR NEUROBIOLOGY
卷 55, 期 1, 页码 776-791

出版社

HUMANA PRESS INC
DOI: 10.1007/s12035-016-0351-z

关键词

Chronic cerebral hypoperfusion; Cognitive impairment; Cerebral blood flow; Autophagy; beta-Amyloid

资金

  1. National Natural Science Foundation of China [81672243]
  2. Shanghai Medical Association Translational research for neurological disease Scientific Fund [SHNR-006]

向作者/读者索取更多资源

Pathological changes and cognitive impairment caused by chronic cerebral hypoperfusion (CCH) have been previously reported. However, how these changes progress remains unclear. Additionally, there are few studies regarding the mechanism underlying the involvement of autophagy in these processes. Two-step bilateral common carotid artery occlusion (BCCAO) was performed to replicate CCH in Sprague Dawley rats. The animals were divided into seven groups, including a sham group and 2-, 4-, 8-, 12-, 16-, and 20-week BCCAO groups (n = 7 per group). Five additional rats were used to monitor cerebral blood fluid (CBF) changes via laser speckle contrast imaging (LSCI). We tested for cognitive changes and pathological changes, including neuronal injury, white matter lesions, and beta-Amyloid (A beta) deposition, via acknowledged methods. Autophagy was analyzed via western blotting and immunohistochemistry. Cognitive impairment appeared beginning at 8 weeks after BCCAO despite improvement in CBF. Neuronal damage began at 8 weeks in the hippocampal CA1 region and at 4 weeks in the cortex. White matter injury was detected in all BCCAO groups. Intracellular A beta accumulation occurred earlier than extracellular plaque formation. The levels of autophagy-related proteins (Beclin-1, light chain 3B, and P62) increased beginning at 2 weeks in the cortex and at 4 weeks in the hippocampus and remained elevated throughout the remainder of the study period. Despite recovery of CBF, autophagy dysfunction occurred early after CCH and played an important role in neuronal deterioration, cognitive decline, and intracellular A beta aggregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据