4.6 Article

Blue phosphorene/ graphene heterostructure as a promising anode for lithium- ion batteries: a firstprinciples study with vibrational analysis techniques

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 2, 页码 611-620

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta09423c

关键词

-

资金

  1. National Natural Science Foundation of China [11704304, 51771144, 51471130]
  2. China Postdoctoral Science Foundation [2017M610629]
  3. Natural Science Foundation of Shaanxi Province [2018JQ1028]
  4. Fundamental Research Funds for the Central Universities
  5. Collaborative Innovation Center of Suzhou Nano Science and Technology

向作者/读者索取更多资源

van der Waals heterostructures can preserve the desired features of their individual components and induce new functions due to interlayer coupling. In this work, based on the dispersion-corrected density functional theory and vibrational analysis techniques, the blue phosphorene/graphene (BlueP/G) heterostructure was systematically studied as a potential anode for Li-ion batteries. It was found that the semi-metal characteristics of graphene are well preserved in the BlueP/G heterostructure, endowing it with excellent electrical conductance for fast electron transport. The binding energy of Li in the BlueP/G system is greatly increased due to the interfacial synergistic effect, as compared to pristine BlueP and graphene monolayers. Consequently, the theoretical specific capacity can be up to 626 mA h g(-1), even exceeding that of the black phosphorene/G heterostructure (485 mA h g(-1)). The minimum diffusion barrier of Li on the BlueP/G system is only 0.13 eV, resulting in a room-temperature diffusivity of 2.61 x 10(-5) cm(2) s(-1), which is two orders of magnitude faster than that on graphene. The impact of the vibrational contribution on the ionic diffusion is material-dependent and significant. More importantly, the BlueP/G heterostructure and its charge products display ultrahigh stiffness in the range of 353-422 N m(-1) and an extremely small effective volume expansion of 10.89% for the fully charged product, which might alleviate the safety concerns commonly associated with huge volume expansion/contraction upon lithiation. These results demonstrate that the BlueP/G heterostructure could be a promising anode material for high-performance Li-ion batteries due to its excellent conductivity, strong adsorption and fast diffusion of Li, high energy capacity, and ultrahigh mechanical stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据