4.6 Article

Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 7, 期 2, 页码 305-313

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8tb02494d

关键词

-

资金

  1. National Natural Science Foundation of China [21575159, 21775162, 21405172, 21575080]
  2. Youth Innovation Promotion Association, CAS [2015170]
  3. Instrument Developing Project of the Chinese Academy of Sciences [YZ201662]

向作者/读者索取更多资源

Nitroxyl (HNO) plays a crucial role in anti-inflammatory effects via the inhibition of inflammatory pathways, but the details of the endogenous generation of HNO still remain challenging owing to the complex biosynthetic pathways, in which the interaction between H2S and NO simultaneously generates HNO and polysulfides (H2Sn) in mitochondria. Moreover, nearly all the available fluorescent probes for HNO are utilized for imaging HNO in cells and tissues, instead of the in situ real-time detection of the simultaneous formation of HNO and H2Sn in mitochondria and animals. Here, we have developed a mitochondria-targeting near-infrared fluorescent probe, namely, Mito-JN, to detect the generation of HNO in cells and a rat model. The probe consists of three moieties: Aza-BODIPY as a fluorescent signal transducer, a triphenylphosphonium cation as a mitochondria-targeting agent, and a diphenylphosphinobenzoyl group as an HNO-responsive unit. The response mechanism is based on an aza-ylide intramolecular ester aminolysis reaction with fluorescence emissions on. Mito-JN displays high selectivity and sensitivity for HNO over various other biologically relevant species. Mito-JN was successfully used for the detection of the endogenous generation of HNO, which is derived from the crosstalk between H2S and NO in living cells. The additional generation of H2Sn was also confirmed using our previous probe Cy-Mito. The anti-inflammatory effect of HNO was examined in a cell model of LPS-induced inflammation and a rat model of gouty arthritis. The results imply that our probe is a good candidate for the assessment of the protective effects of HNO in inflammatory processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据