4.6 Article

Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: kinetic, thermodynamic and isotherm analysis

期刊

RSC ADVANCES
卷 9, 期 1, 页码 560-568

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra09562k

关键词

-

向作者/读者索取更多资源

Two-dimensional layered materials are gaining much attention in the field of wastewater purification. Herein, we report the synthesis and characterization of an anion selective copper-aluminum-layered double hydroxide/single-walled carbon nanotubes (CuAl-LDH/SWCNTs) composite for the scavenging of organic dye indigo carmine (IC) from aqueous solution. A facile urea hydrolysis method was used for the controlled growth of the metal hydroxides over the SWCNTs. Structural characterization of the prepared materials was investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. The obtained results revealed that the CuAl-LDH/SWCNTs composite has a higher potential for the removal of IC in comparison to CuAl-LDH and SWCNTs. The enhanced adsorption capacity of the composite revealed that deposition of CuAl-LDH over SWCNTs increases the active adsorption sites and promotes the interactions between the composite and IC dye via anion exchange, electrostatic, -, hydrogen bonding etc. Moreover, adsorption kinetics, isotherms, and thermodynamic studies have been also proposed to illustrate the mechanism of the IC adsorption onto the CuAl-LDH/SWCNTs composite. Thermodynamic parameters showed that the adsorption of IC dye onto the CuAl-LDH/SWCNTs composite was exothermic and spontaneous in nature. Intra-particle diffusion was determined to be the rate-limiting step and adsorption of IC followed the Langmuir isotherm model with the maximum monolayer adsorption capacity 294.117 mg g(-1) at 20 degrees C. The results suggest that the CuAl-LDH/SWCNTs composite is a potential material for IC adsorption in aqueous solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据