4.6 Article

Symmetry-breaking induced large piezoelectricity in Janus tellurene materials

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 21, 期 3, 页码 1207-1216

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp04669g

关键词

-

资金

  1. National Natural Science Foundation of China [NSFC-21573008, -21773003]
  2. Ministry of Science and Technology of China [2017YFA0204902]

向作者/读者索取更多资源

Structural symmetry-breaking can lead to novel electronic and piezoelectric properties in two-dimensional (2D) materials. In this paper, we propose a 2D Janus tellurene (Te2Se) monolayer with asymmetric Se/Te surfaces and its derived multilayer structures. The band structure calculations show that the 2D Janus Te2Se monolayer is an indirect gap semiconductor, and the intrinsic mirror asymmetry combined with the spin-orbit coupling induces the Rashba spin splitting and the out-of-plane spin polarization. Moreover, the absence of both the inversion symmetry and out-of-plane mirror symmetry, together with flexible mechanical properties, results in large in-plane and out-of-plane piezoelectric coefficients that are valuable in 2D piezoelectric materials. Furthermore, the out-of-plane piezoelectric effects can exist in multilayer structures under different stacking sequences while the in-plane piezoelectric effect can only exist in some specific stacking patterns. The piezoelectric coefficients of the Janus Te2Se monolayer and multilayers exceed those of many Janus transition metal dichalcogenides and other well-known piezoelectric materials (e.g., -quartz and wurtzite-AlN). The combination of the SOC-induced spin splitting and large piezoelectricity endows the Janus Te2Se structures with potential for applications in spintronics, flexible electronics and piezoelectric devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据