4.6 Article

Relativistic Jets in Core-collapse Supernovae

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 871, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/2041-8213/aaffce

关键词

gamma-ray burst: general; stars: jets; supernovae: general

资金

  1. I-Core center of excellence by an ERC grant
  2. TReX
  3. Templeton grant
  4. ERC grant, GRB/SN
  5. STFC [ST/F007159/1, ST/R000484/1, ST/L00061X/1] Funding Source: UKRI

向作者/读者索取更多资源

After decades of extensive research the mechanism driving core-collapse supernovae (CCSNe) is still unclear. One common mechanism is a neutrino-driven outflow, but others have been proposed. Among those, a long-standing idea is that jets play an important role in supernova (SN) explosions. Gamma-ray bursts (GRBs) that accompany hypernovae, rare and powerful CCSNe, involve relativistic jets. A GRB jet punches a hole in the stellar envelope and produces the observed gamma-rays far outside the progenitor star. While SNe and jets coexist in long GRBs (LGRBs), the relationship between the mechanisms driving the hypernova and the jet is unknown. Also unclear is the relationship between the rare hypernovae and the more common CCSNe. Here we present observational evidence that indicates that choked jets are active in CCSNe that are not associated with GRBs. A choked jet deposits all its energy in a cocoon. The cocoon eventually breaks out from the star, releasing energetic material at very high, yet sub-relativistic, velocities. This fast-moving material engulfs the star leading to a unique detectable very broad line absorption signature in early time SN spectra. We find a clear evidence for this signature in several CCSNe, all involving progenitors that have lost all, or most, of their hydrogen envelope prior to the explosion. These include CCSNe that do not harbor GRBs or any other relativistic outflows. Our findings suggest a continuum of central engine activities in different types of CCSNe and call for rethinking of the explosion mechanism of CCSNe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据