4.7 Article

Predicting the Extreme Ultraviolet Radiation Environment of Exoplanets around Low-mass Stars: The TRAPPIST-1 System

期刊

ASTROPHYSICAL JOURNAL
卷 871, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aaf891

关键词

stars: activity; stars: chromospheres; stars: low-mass; ultraviolet: stars

资金

  1. NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX15AQ94H]
  2. DFG [GrK 1351, HA 3457/20-1, HA 3457/23-1]
  3. NVIDIA Corporation
  4. Office of Science of the U.S. Department of Energy [DE-AC03-76SF00098]
  5. NASA [NNX17AG24G]
  6. NASA Habitable Worlds grant [NNX16AB62G]
  7. NASA [NNX17AG24G, 1001852] Funding Source: Federal RePORTER

向作者/读者索取更多资源

The high energy radiation environment around M dwarf stars strongly impacts the characteristics of close-in exoplanet atmospheres, but these wavelengths are difficult to observe due to geocoronal and interstellar contamination. On account of these observational restrictions, a stellar atmosphere model may be used to compute the stellar extreme ultraviolet (EUV; 100-912 angstrom) spectrum. We construct semiempirical nonlocal thermodynamic equilibrium model spectra of the ultracool M8 star TRAPPIST-1 that span EUV to infrared wavelengths (100 angstrom-2.5 mu m) using the atmosphere code PHOENIX. These upper atmosphere models contain prescriptions for the chromosphere and transition region and include newly added partial frequency redistribution capabilities. In the absence of broadband UV spectral observations, we constrain our models using Hubble Space Telescope Lyman alpha observations from TRAPPIST-1 and Galaxy Evolution Explorer UV photometric detections from a set of old M8 stars (> 1 Gyr). We find that calibrating the models using both data sets separately yield similar far-ultraviolet and NUV fluxes, and EUV fluxes that range from (1.32-17.4) x 10(-14) ergs s(-1) cm(-2). The results from these models demonstrate that the EUV emission is very sensitive to the temperature structure in the transition region. Our lower activity models predict EUV fluxes similar to previously published estimates derived from semiempirical scaling relationships, while the highest activity model predicts EUV fluxes a factor of 10 higher. Results from this study support the idea that the TRAPPIST-1 habitable zone planets likely do not have much liquid water on their surfaces due to the elevated levels of high energy radiation emitted by the host star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据