4.6 Article

Atmospheric Dynamics and the Variable Transit of KELT-9 b

期刊

ASTRONOMICAL JOURNAL
卷 157, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-3881/aaf725

关键词

planets and satellites: atmospheres; planets and satellites: composition; stars: flare

资金

  1. NASA Origins of the Solar System [NNX13AH79G]
  2. German Federal Ministry (BMBF) [05AL2BA1/3, 05A08BAC]
  3. National Science Foundation [AST-1313268]
  4. NASA Exoplanet Research Program [14-XRP14-2-0090]

向作者/读者索取更多资源

We present a spectrally and temporally resolved detection of the optical Mg I triplet at 7.8 sigma in the extended atmosphere of the ultra-hot Jupiter KELT-9 b, adding to the list of detected metal species in the hottest gas giant currently known. Constraints are placed on the density and radial extent of the excited hydrogen envelope using simultaneous observations of Ha and H beta under the assumption of a spherically symmetric atmosphere. We find that planetary rotational broadening of v(rot) = 8.21(-0.7)(+0.6) km s(-1) is necessary to reproduce the Balmer line transmission profile shapes, where the model including rotation is strongly preferred over the non-rotating model using a Bayesian information criterion comparison. The time series of both metal line and hydrogen absorption show remarkable structure, suggesting that the atmosphere observed during this transit is dynamic rather than static. We detect a relative emission feature near the end of the transit which exhibits a P-Cygni-like shape, evidence of material moving at approximate to 50-100 km s(-1) away from the planet. We hypothesize that the in-transit variability and subsequent P-Cygni-like profiles are due to a flaring event that caused the atmosphere to expand, resulting in unbound material being accelerated to high speeds by stellar radiation pressure. Further spectroscopic transit observations will help establish the frequency of such events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据