4.6 Article

Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway

期刊

MOLECULAR CARCINOGENESIS
卷 56, 期 12, 页码 2669-2680

出版社

WILEY
DOI: 10.1002/mc.22710

关键词

chemoresistance; colorectal cancer; miR-135b; miR-182; ST6GALNAC2

资金

  1. National Natural Science Foundation of China [81472014]

向作者/读者索取更多资源

MicroRNAs (miRNAs) are increasingly involved in the development of drug resistance, including 5-fluorouracil (5-FU) resistance in colorectal cancer (CRC). Aberrant sialylation is correlated with human CRC. The study was to explore whether miR-135b and miR-182 modulated 5-FU chemoresistance of CRC by targeting ST6GALNAC2 via PI3K/AKT pathway. MiR-135b and miR-182 were found to be up-regulated in CRC tissues and 5-FU resistant CRC cell lines. Forced miR-135b and miR-182 expression also affected ST6GALNAC2 levels. Using reporter-gene assay, ST6GALNAC2 was identified as direct target of miR-135b and miR-182, while ST6GALNAC2 expression exhibited patterns opposite to that of miR-135b and miR-182 in CRC samples and cell lines. Interestingly, up-regulation of miR-135b or miR-182 increased drug resistance and proliferation, but decreased apoptosis in 5-FU resistant CRC cell lines. Suppression of these miRNAs implicated an inverse function, while altered expression of ST6GALNAC2 mediated CRC progression upon transfection with miR-135b/-182 mimic or inhibitor. Furthermore, miR-135b and miR-182 were clarified to regulate the activity of phosphoinositide-3 kinase (PI3K)/AKT pathway. Inhibition of the PI3K/AKT pathway enhanced the chemosensitivity to 5-FU in HCT-8/5-FU and LoVo/5-FU. Taken together, miR-135b and miR-182 may reverse the resistance to 5-FU in CRC cells by targeting ST6GALNAC2 via PI3K/AKT pathway, which render potential chemotherapy targets for the treatment of CRC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据