4.5 Article

Bone Microenvironment Changes in Latexin Expression Promote Chemoresistance

期刊

MOLECULAR CANCER RESEARCH
卷 15, 期 4, 页码 457-466

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1541-7786.MCR-16-0392

关键词

-

资金

  1. NIH [P01 CA093900]

向作者/读者索取更多资源

Although docetaxel is the standard of care for advanced prostate cancer, most patients develop resistance to docetaxel. Therefore, elucidating the mechanism that underlies resistance to docetaxel is critical to enhance therapeutic intervention. Mining cDNA microarray from the PC-3 prostate cancer cell line and its docetaxel- resistant derivative (PC3-TxR) revealed decreased latexin (LXN) expression in the resistant cells. LXN expression was inversely correlated with taxane resistance in a panel of prostate cancer cell lines. LXN knockdown conferred docetaxel resistance to prostate cancer cells in vitro and in vivo, whereas LXN overexpression reduced docetaxel resistance in several prostate cancer cell lines. A mouse model of prostate cancer demonstrated that prostate cancer cells developed resistance to docetaxel in the bone microenvironment, but not the soft tissue microenvironment. This was associated with decreased LXN expression in prostate cancer cells in the bone microenvironment compared with the soft tissue microenvironment. It was identified that bone stromal cells decreased LXN expression through methylation and induced chemoresistance in prostate cancer in vitro. These findings reveal that a subset of prostate cancer develops docetaxel resistance through loss of LXN expression associated with methylation and that the bone microenvironment promotes this drug resistance phenotype. Implications: This study suggests that the LXN pathway should be further explored as a viable target for preventing or reversing taxane resistance in prostate cancer. (C) 2017 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据