4.3 Article

Study of the in vitro modulation exerted by the antidepressant drug escitalopram on the expression of candidate microRNAs and their target genes

期刊

MOLECULAR AND CELLULAR NEUROSCIENCE
卷 85, 期 -, 页码 220-225

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2017.10.005

关键词

Cell culture; Escitalopram; Antidepressant drugs; microRNAs; Transcriptome; Gene expression

资金

  1. Italian Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR) local funds of the University of Brescia
  2. Cariplo Foundation (MICROMOOD) [2009-2701]

向作者/读者索取更多资源

Recent studies indicated a role of microRNAs (miRNAs, small non-coding RNAs which regulate the expression of target genes by acting on mRNAs) in several neural processes, in the pathogenetic mechanisms of neuropsychiatric diseases and in the action of psychotropic drugs. A modulation induced by the antidepressant drug escitalopram on the expression levels of 30 miRNAs was highlighted in the blood of patients suffering from major depressive disorder. With the aim to investigate the effects of escitalopram in an in vitro model, we performed an analysis of the effects produced by escitalopram on the profiles of the 6 miRNAs found to be more significantly modulated in the above-mentioned study (miR-130b, miR-26a and -26b, let-7f, miR-770-5p, miR-34c-5p) in human U87 glioblastoma cells. Cells were treated with the drug for 24, 48 and 72 h. The obtained results confirmed a significant increase of let-7f, both after 48 (p = 0.031) and 72 h (p = 0.022), and of miR-26a after 48 h (p = 0.032). On the same experimental model, a transcriptome analysis was conducted after 72 h, highlighting a drug-induced modulation of 1184 protein-coding genes, 207 of which represent let-7f targets. Particularly interesting was the downregulation of BCOR, CCND1 and ATR, validated let-7f targets, which play a key role in the mechanisms of neurogenesis, neuroplasticity and protection from oxidative stress in the brain, indicating that escitalopram could exert downstream effects on gene expression through the regulation of specific miRNAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据