4.5 Article

TIE2 Associates with Caveolae and Regulates Caveolin-1 To Promote Their Nuclear Translocation

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 37, 期 21, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00142-17

关键词

TIE2; caveolin-1; nuclear translocation; radioresistance; brain tumor; nuclear transport; radiosensitivity

资金

  1. National Institutes of Health (NIH) [R01 NS069964, P50 CA127001]
  2. Cancer Center Support [P30CA016672]

向作者/读者索取更多资源

DNA repair pathways are aberrant in cancer, enabling tumor cells to survive standard therapies-chemotherapy and radiotherapy. Our group previously reported that, upon irradiation, the membrane-bound tyrosine kinase receptor TIE2 translocates into the nucleus and phosphorylates histone H4 at Tyr51, recruiting ABL1 to the DNA repair complexes that participate in the nonhomologous end-joining pathway. However, no specific molecular mechanisms of TIE2 endocytosis have been reported. Here, we show that irradiation or ligand-induced TIE2 trafficking is dependent on caveolin-1, the main component of caveolae. Subcellular fractionation and confocal microscopy demonstrated TIE2/caveolin-1 complexes in the nucleus, and using inhibitor or small interfering RNAs (siRNAs) against caveolin-1 or Tie2 inhibited their trafficking. TIE2 was found in caveolae and directly phosphorylated caveolin-1 at Tyr14 in vitro and in vivo. This modification regulated the generation of TIE2/caveolin-1 complexes and was essential for TIE2/caveolin-1 nuclear translocation. Our data further demonstrate that the combination of TIE2 and caveolin-1 inhibitors resulted in significant radiosensitization of malignant glioma cells, which will guide the development of combinatorial treatment with radiotherapy for patients with glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据