4.7 Article

Lysine Acetylome Analysis Reveals Photosystem II Manganese-stabilizing Protein Acetylation is Involved in Negative Regulation of Oxygen Evolution in Model Cyanobacterium Synechococcus sp PCC 7002

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 16, 期 7, 页码 1297-1311

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M117.067835

关键词

-

资金

  1. National Natural Science Foundation of China [31570829]
  2. Chinese Academy of Sciences Grant [QYZDY-SSW-SMC004]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB14030202]

向作者/读者索取更多资源

N-epsilon -Acetylation of lysine residues represents a frequently occurring post-translational modification widespread in bacteria that plays vital roles in regulating bacterial physiology and metabolism. However, the role of lysine acetylation in cyanobacteria remains unclear, presenting a hurdle to in-depth functional study of this post-translational modification. Here, we report the lysine acetylome of Synechococcus sp. PCC 7002 (hereafter Synechococcus) using peptide prefractionation, immunoaffinity enrichment, and coupling with high-precision liquid chromatographytandem mass spectrometry analysis. Proteomic analysis of Synechococcus identified 1653 acetylation sites on 802 acetylproteins involved in a broad range of biological processes. Interestingly, the lysine acetylated proteins were enriched for proteins involved in photosynthesis, for example. Functional studies of the photosystem II manganese- stabilizing protein were performed by site-directed mutagenesis and mutants mimicking either constitutively acetylated (K99Q, K190Q, and K219Q) or nonacetylated states (K99R, K190R, and K219R) were constructed. Mutation of the K190 acetylation site resulted in a distinguishable phenotype. Compared with the K190R mutant, the K190Q mutant exhibited a decreased oxygen evolution rate and an enhanced cyclic electron transport rate in vivo. Our findings provide new insight into the molecular mechanisms of lysine acetylation that involved in the negative regulation of oxygen evolution in Synechococcus and creates opportunities for in-depth elucidation of the physiological role of protein acetylation in photosynthesis in cyanobacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据