4.6 Article

A single light spot GC detector employing localized surface plasmon resonance of porous Au@SiO2 nanoparticle multilayer

期刊

ANALYST
卷 144, 期 2, 页码 698-706

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8an01921e

关键词

-

资金

  1. Ministry of Science and Technology, Taiwan [106-2113-M-003-005]

向作者/读者索取更多资源

This paper describes the synthesis of a nano-porous multilayered film consisting of Au@SiO2 nanoparticles. This film was used to miniaturize the size of a localized surface plasmon resonance (LSPR)based capillary gas chromatograph (GC) detector. A layer-by-layer (LbL) approach with proper surface reaction sequences was used to create a multilayer structure that consisted of as many as five layers of Au@SiO2 nanoparticles. The center wavelength of LSPR was shifted from 520 to 634 nm due to the approximation of additional layers of nanoparticles. The vapor response time for this Au@SiO2 multilayer LSPR sensor was identical to that of an Au nanoparticle monolayer, which confirmed that this multilayer structure has a high level of gas permeability. The multilayer was synthesized inside a glass capillary for use as a GC detector. Due to the enhancement of absorbance, the gas chromatographic signal was obtained via a single spotlight that penetrated one side of the glass capillary and was then reflected by a silver mirror coated on the opposite side. The detection limits were <= 20 ng for cyclohexanone and m-xylene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据