4.4 Article

Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams

向作者/读者索取更多资源

In this paper, free and forced vibration analysis of viscoelastic microcomposite beam reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) is studied using the modified couple stress theory (MCST). The material properties of micro composite beam by generalized rule of mixtures carbon nanotubes are estimated. In addition, these properties are stated as uniform, and functionally graded (FG) distributions in the thickness direction. Energy method and Hamilton's principle are employed to establish the governing equations of motion for the vibration of viscoelastic damped micro composite beam reinforced by SWCNTs based on the Kelvin-Voigt model. The influences of material length scale parameter, structural damping coefficient and different distributions of SWCNTs on non-dimensional complex natural frequency and amplitude vibration of the viscoelastic micro composite beam are investigated. The results reveal that the lowest vibration amplitude of FG microcomposite beam by the FG-X and the highest occurs by FG-LOZENGE. Moreover, in the presence of external periodic load and the absence of structural damping coefficient, the vibration amplitude increases and FG microcomposite beam becomes unstable, even though the amplitude of vibration decreases with increasing structural damping coefficient. It is shown that the natural frequency of SWCNT reinforced composite is more than the frequency of multi-walled carbon nanotubes because SWCNT have more stiffness. In addition, the results illustrate that the experimental data by Lei et al. agree well with those predicted by the MCST in the present work.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据