4.0 Article

Compton PET: a simulation study for a PET module with novel geometry and machine learning for position decoding

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/2057-1976/aaef03

关键词

PET; Compton scattering; scintillating crystal; side readout; layer structure; neural network

资金

  1. NIH [R01 EB019439]

向作者/读者索取更多资源

This paper describes a simulation study of a positron emission tomography (PET) detector module that can reconstruct the kinematics of Compton scattering within the scintillator. We used a layer structure, with which we could recover the positions and energies for the multiple interactions of a gamma ray in the different layers. Using the Compton scattering formalism, the sequence of interactions can be estimated. The true first interaction position extracted in the Compton scattering will help minimize the degradation of the reconstructed image resolution caused by intercrystal scatter events. Because of the layer structure, this module also has readily available user-defined resolution for the depth of interaction. The semi-monolithic crystals enable high light collection efficiency and an energy resolution of similar to 10% has been achieved in the simulation. We used machine learning to decode the gamma ray interaction locations, achieving an average spatial resolution of 0.40 mm. Our proposed detector design provides a pathway to increase the sensitivity of a system without affecting other key performance features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据