4.6 Article

A novel calendula-like MnNb2O6 anchored on graphene sheet as high-performance intercalation pseudocapacitive anode for lithium-ion capacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 6, 页码 2855-2863

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta10233c

关键词

-

资金

  1. National Natural Science Foundation of China [21503055]
  2. Hong Kong Scholars Programs [XJ2016046]
  3. Heilongjiang Postdoctoral Fund [LBH-TZ0609]
  4. Fundamental Research Funds for the Central Universities [HEUCFG201809]

向作者/读者索取更多资源

To balance the electrochemical performance gap between the Li+ insertion/deintercalation anode and the anion adsorption/desorption cathode, in this paper, for the first time, we investigated MnNb2O6 as a new rate capability type anode material for lithium-ion capacitors (LICs). Novel calendula-like MnNb2O6 particles anchored on reduced graphene oxide (rGO) were prepared via a simple two-step hydrothermal route. The special three-dimensional structure and cross-linked conductive network constructed by graphene could shorten the lithium-ion diffusion path, efficiently facilitate electron transmission and adapt to volume strain without shedding during the long-term charge/discharge process. This resulted in excellent charge storage capacity and reasonably superior cycling stability. MnNb2O6@rGO//AC LICs assembled with MnNb2O6@rGO as the cathode and activated carbon (AC) as the anode exhibited excellent performance with maximum energy density of 118 W h kg(-1) and power density of 8000 W kg(-1) based on the total mass loading of the active material weight. The initial capacity retention was up to 88% after 10 000 charge/discharge cycles, which was higher than that of bimetallic oxide materials reported so far. Therefore, this study might provide a novel rate capability anode material for LICs with high performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据