4.7 Article

Applications of molecular simulations for separation and adsorption in zeolites

期刊

MICROPOROUS AND MESOPOROUS MATERIALS
卷 242, 期 -, 页码 294-348

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.micromeso.2017.01.038

关键词

Zeolites; Molecular simulation; Adsorption; Separation; Diffusion

向作者/读者索取更多资源

Zeolites are fascinating and versatile materials which are vital for a wide range of industries, due to their unique structural and chemical properties, which are the basis of applications in gas separation, ion exchange, and catalysis. Given their economic impact, there is a powerful incentive for smart design of new materials with enhanced functionalities for maximizing their application performance. This review article intends to summarize the published reports on the applications of molecular simulation in adsorption, separation and diffusion. The theoretical aspects, adsorption thermodynamics, adsorption isotherm were comprehensively studied in relation to the adsorption applications and how the adsorbates' characteristics influence the adsorption. This review comprehensively discusses the theoretical and computational aspects of diffusion of pure components, long chain hydrocarbons or mixture diffusion, including the molecular dynamics simulations and kinetic Monte Carlo. Furthermore, the cation-zeolite-adsorbate interactions are thoroughly examined so as to elucidate the role of cations in zeolites applications and how the cation exchange influences structural dynamics and properties of zeolites. This study also focuses on the role of cations in gas/liquid adsorption and separations. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据