4.4 Article

Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization

期刊

MICROELECTRONIC ENGINEERING
卷 179, 期 -, 页码 48-55

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mee.2017.04.024

关键词

Conductive nanocomposite; Carbon nanotube; Two-photon polymerization; Microstructure

资金

  1. German Research Foundation (DFG) [STA 1392/2-1, VO 583/29-1, ES 182/8-1]

向作者/读者索取更多资源

Femtosecond laser-induced two-photon polymerization (2PP) of carbon nanofiller doped polymers was utilized to produce electrically conductive microstructures, which are expected to be applicable as microelectronic components or micro-electromechanical systems in sensors. The nanocomposites were processed by compounding an inorganic-organic hybrid material with two different types (short and long) of single walled carbon nanotubes (SWCNTs). Different SWCNT contents were dispersed in the polymer by sonication to adjust the electrical conductivity of the nanocomposites. Low surface resistivity values of similar to 4.6 x 10(5) Omega/sq. could be measured for coated reference films with a thickness of 30 pm having an exceptionally low SWCNT content of 0.01 wt% of the long type of SWCNT5. In contrast, a higher minimum resistivity of 1.5 x 10(6) Omega/sq. was exhibited for composites with a higher content, 2 wt%, of short SWCNTs. The structural quality of the microstructures processed by 2PP was mainly influenced by the dispersion quality of the SWCNTs. To characterize the electrical conductivity, conductive atomic force microscopy was applied for the first time. In microstructures with 0.05 wt% of the long type of SWCNT5, a contact current could be detected over a wide range of the measured area visualizing the electrical conductive CNT network, which has not been reported before. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据