4.7 Article

Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression

期刊

MICROBIAL CELL FACTORIES
卷 16, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s12934-017-0839-x

关键词

GroESL; Expression level; Tolerance; Escherichia coli; Phloroglucinol

资金

  1. National Natural Science Foundation of China [21572242]
  2. Taishan Scholars Climbing Program of Shandong [tspd20150210]

向作者/读者索取更多资源

Background: Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes. Results: In the present work, we examined the impact of the native GroESL chaperone system with different overexpression levels on phloroglucinol tolerance and production in E. coli. The groESL gene was cloned into an expression vector, of which expression level was regulated by three different promoters (natural, tac and T7 promoter). Strain tolerance was evaluated employing viable cell counts and phloroglucinol production. In comparison with the control strain, all GroESL overexpressing strains showed good characteristics in cell viability and phloroglucinol synthesis. Strain which overexpressed GroESL under tac promoter was found to show the best tolerance in all of those tested, resulting in a 3.19-fold increase in viable cell numbers compared with control strain of agar-plate culture under the condition of 0.7 g/L phloroglucinol, and a 39.5% increase in phloroglucinol production under fed-batch fermentation. This engineered strain finally accumulated phloroglucinol up to 5.3 g/L in the fed-batch cultivation 10 h after induction, and the productivity was 0.53 g/L/h. To date, the highest phloroglucinol production was achieved in this work compared with the previous reports, which is promising to make the bioprocess feasible from the economical point. Conclusions: The data show that appropriate expression level of GroESL plays a critical role in improving phloroglucinol tolerance and production in E. coli, and maybe involve in controlling some aspects of the stress response system through upregulation of GroESL. GroESL overexpression is therefore a feasible and efficient approach for improvement of E. coli tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据