4.7 Article

Tubulation pattern of membrane vesicles coated with biofilaments

期刊

PHYSICAL REVIEW E
卷 99, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.022414

关键词

-

资金

  1. CSIR (India)

向作者/读者索取更多资源

Narrow membrane tubes are commonly pulled out from the surface of phospholipid vesicles using forces applied either through laser or magnetic tweezers or through the action of processive motor proteins. Recent examples have emerged in which an array of such tubes grows spontaneously from vesicles coated with bioactive cytoskeletal filaments (e.g., FtsZ, microtubule) in the presence GTP or ATP. We show how a soft vesicle deforms as a result of the interplay between its topology, local curvature, and the forces due to filament bundles. We present results from dynamically triangulated Monte Carlo simulations of a closed membrane vesicle coated with a nematic field (the filaments), and we show how the intrinsic curvature of the filaments and their bundling interactions drive membrane tubulation. We predict interesting patterns consisting of a large number of nematic defects that accompany tubulation. A common theme emerges: defect locations on vesicle surfaces are hot spots of membrane deformation activity, which could be useful for vesicle origami. Although our equilibrium model is not applicable to the nonequilibrium shape dynamics exhibited by active microtubule-coated vesicles, we show that some of the features, such as the size-dependent vesicle shape and the number of tubes, can still be understood from our equilibrium model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据