4.7 Article

Gradient Oxygen Vacancies in V2O5/PEDOT Nanocables for High-Performance Supercapacitors

期刊

ACS APPLIED ENERGY MATERIALS
卷 2, 期 1, 页码 668-677

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.8b01676

关键词

gradient oxygen vacancies; vanadium pentoxide; PEDOT; nanocables; supercapacitors

资金

  1. National Natural Science Foundation of China [U1503292, 51472182]
  2. Fundamental Research Funds for the Central Universities
  3. National Key Research and Development Program of China [2017YFA0204600]
  4. National Science Foundation [DMR 1505902, 1803256]
  5. China Scholarship Council (CSC)
  6. Directorate For Engineering
  7. Div Of Chem, Bioeng, Env, & Transp Sys [1803256] Funding Source: National Science Foundation

向作者/读者索取更多资源

V2O5/poly(3,4-ethylenedioxythiophene) nanocables with oxygen vacancies gradually decreasing from the surface to the core (G-V2O5/PEDOT nanocables) were prepared as electrodes for supercapacitors. Gradient oxygen vacancies formed when 3,4-ethylenedioxythiophene monomers polymerized conformally on the surface of V2O5 nanofibers, providing G-V2O5/PEDOT nanocables with much improved charge storage kinetics and structural durability. The role of gradient oxygen vacancies in enhancing charge transfer/transport was also evidenced by means of density functional theory calculations. G-V2O5/PEDOT nanocable-based supercapacitors showed excellent electrochemical performance with a high specific capacitance of 614 F g(-1) and energy density of 85 W h kg(-1) in neutral aqueous electrolyte. The synergistic combination of gradient oxygen vacancies and polymer shell provided the G-V2O5/PEDOT nanocable-based supercapacitors with an excellent long cycling life with 122% capacitance retention after 50 000 cycles. Without any additional oxidizing agent, this simple synthesis method is cost competitive and ready for scale up manufacturing for such energy storage electrode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据