4.7 Article

CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli

期刊

METABOLIC ENGINEERING
卷 41, 期 -, 页码 1-10

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2017.02.009

关键词

Isopropanol; CRISPR EnAbled Trackable genome; Engineering; RBS library; Engineered Escherichia coli; Proteomic analysis

资金

  1. Department of Energy United States grant [DE-FOA-0000996]

向作者/读者索取更多资源

Isopropanol is an important target molecule for sustainable production of fuels and chemicals. Increases in DNA synthesis and synthetic biology capabilities have resulted in the development of a range of new strategies for the more rapid design, construction, and testing of production strains. Here, we report on the use of such capabilities to construct and test 903 different variants of the isopropanol production pathway in Escherichia coli. We first constructed variants to explore the effect of codon optimization, copy number, and translation initiation rates on isopropanol production. The best strain (PA06) produced isopropanol at titers of 17.5 g/L, with a yield of 0.62 (mol/mol), and maximum productivity of 0.40 g/L/h. We next integrated the isopropanol synthetic pathway into the genome and then used the CRISPR EnAbled Trackable genome Engineering (CREATE) strategy to generate an additional 640 individual RBS library variants for further evaluation. After testing each of these variants, we constructed a combinatorial library containing 256 total variants from four different RBS levels for each gene. The best producing variant, PA14, produced isopropanol at titers of 7.1 g/L at 24 h, with a yield of 0.75 (mol/mol), and maximum productivity of 0.62 g/L/h (which was 0.22 g/L/h above the parent strain PA07). We demonstrate the ability to rapidly construct and test close to similar to 1000 designer strains and identify superior performers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据