4.7 Article

Low-cost and portable UV holographic microscope for high-contrast protein crystal imaging

期刊

APL PHOTONICS
卷 4, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5080158

关键词

-

资金

  1. NSF Engineering Research Center (ERC, PATHS-UP)
  2. Army Research Office (ARO) [W911NF-13-1-0419, W911NF-13-1-0197]
  3. ARO Life Sciences Division
  4. National Science Foundation (NSF) CBET Division Biophotonics Program
  5. NSF Emerging Frontiers in Research and Innovation (EFRI) Award
  6. NSF INSPIRE Award
  7. NSF Partnerships for Innovation: Building Innovation Capacity (PFI: BIC) Program
  8. National Institutes of Health (NIH) [R21EB023115]
  9. Howard Hughes Medical Institute (HHMI)
  10. Vodafone Americas Foundation
  11. Mary Kay Foundation
  12. Steven and Alexandra Cohen Foundation
  13. BER program of the Department of Energy Office of Science [DE-FC02-02ER63421]

向作者/读者索取更多资源

Imaging protein crystals and distinguishing them from salt crystals is an important task for protein crystallographers. The conventional tool used for this purpose is a dual-mode microscope composed of bright-field and ultraviolet (UV) induced fluorescence modes. The distinction between a protein and a salt crystal is made based upon the fluorescence response to the UV excitation, where most protein crystals absorb the UV excitation and emit fluorescence, unlike salt crystals. These dual-mode optical microscopes are sensitive; however, they are relatively bulky and expensive as they require UV-grade optics. As an alternative, here we demonstrate that on-chip UV holographic imaging offers a low-cost, portable, and robust technique to image and distinguish protein crystals from salt crystals, without the need for any expensive and bulky optical components. Only composed of a UV light-emitting-diode at 280 nm and a consumer-grade complementary metal-oxide-semiconductor image sensor decapped and interfaced to a Raspberry Pi single-board computer, the necessary information from the crystal samples (placed very close to the sensor active area) is captured in the form of in-line holograms and extracted through digital back-propagation. In these holographic amplitude reconstructions, protein crystals appear significantly darker compared to the background due to the strong UV absorption, unlike salt crystals which do not show any contrast, enabling us to clearly distinguish between them. We believe that the on-chip UV holographic microscope could serve as a low-cost, sensitive, and robust alternative to conventional lens-based UV-microscopes used in protein crystallography. (C) 2019 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据