4.8 Article

Charge transfer complexation boosts molecular conductance through Fermi level pinning

期刊

CHEMICAL SCIENCE
卷 10, 期 8, 页码 2396-2403

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc04199g

关键词

-

资金

  1. UK EPSRC [EP/H035818/1, EP/H035184/1, EP/M005046/1]
  2. US NSF [ECCS 1609788, ECCS 1231967]
  3. EPSRC [EP/H035184/1, EP/H035818/1, EP/M005046/1] Funding Source: UKRI

向作者/读者索取更多资源

Interference features in the transmission spectra can dominate charge transport in metal-molecule-metal junctions when they occur close to the contact Fermi energy (EF). Here, we show that by forming a charge-transfer complex with tetracyanoethylene (TCNE) we can introduce new constructive interference features in the transmission profile of electron-rich, thiophene-based molecular wires that almost coincide with EF. Complexation can result in a large enhancement of junction conductance, with very efficient charge transport even at relatively large molecular lengths. For instance, we report a conductance of 10(-3) G(0) (similar to 78 nS) for the similar to 2 nm long alpha-quaterthiophene: TCNE complex, almost two orders of magnitude higher than the conductance of the bare molecular wire. As the conductance of the complexes is remarkably independent of features such as the molecular backbone and the nature of the contacts to the electrodes, our results strongly suggest that the interference features are consistently pinned near to the Fermi energy of the metallic leads. Theoretical studies indicate that the semi-occupied nature of the charge-transfer orbital is not only important in giving rise to the latter effect, but also could result in spin-dependent transport for the charge-transfer complexes. These results therefore present a simple yet effective way to increase charge transport efficiency in long and poorly conductive molecular wires, with important repercussions in single-entity thermoelectronics and spintronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据