4.8 Article

High-efficiency modulation of coupling between different polaritons in an in-plane graphene/hexagonal boron nitride heterostructure

期刊

NANOSCALE
卷 11, 期 6, 页码 2703-2709

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr08334g

关键词

-

资金

  1. National Basic Key Research Program of China [2015CB932402]
  2. National Key Research and Development Program of China [2016YFA0201600]
  3. National Natural Science Foundation of China [11504063, 11674073, 11704085, 11427808]
  4. Bureau of International Cooperation
  5. key program of the Bureau of Frontier Sciences and Education, Chinese Academy of Sciences [QYZDB-SSW-SLH021]
  6. Key Project of Chinese Academy of Sciences [ZDBS-SSW-JSC002]
  7. Strategic Priority Research Program of Chinese Academy of Sciences [XDB30000000]

向作者/读者索取更多资源

Two-dimensional van der Waals (vdW) materials have a full set of highly confined polariton modes, such as low-loss phonon polaritons and dynamically tunable graphene plasmons, which provide a solution for integrated nanophotonic devices by combining the unique advantages of different polaritons. Highly efficient coupling between these complementary polaritons is key to realize the nanoscale optical integration. However, fluctuations of permittivity or geometry at the abrupt interfaces have been demonstrated as perturbations or scatters of polaritons. Here, in-plane plasmon-phonon polariton coupling in an in-plane graphene/hexagonal boron nitride (BN) heterostructure is studied using a full-wave electromagnetic numerical model. Transmittance between different polaritons is proportional to momentum matching, which can be tuned using the graphene Fermi energy. The transmittance between a graphene plasmon and a BN phonon polariton can be controlled between 0% and 100% within the upper Reststrahlen band of the BN. This is central to many photon devices, such as waveguides, wavefront shapers, filters, modulators and switches. Moreover, we simulate near-field interference patterns in an in-plane heterostructure based on the theoretical dispersion relation of polaritons, enabling scattering scanning near-field optical microscopy a potential experimental method to investigate the coupling between different polaritons. This study provides a theoretical basis for efficient coupling of propagation and modulation between different polaritons in in-plane heterostructures of vdW materials, which could pave a way to design nanoscale multi-functional waveguide devices in integrated photonic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据