4.8 Article

High-performance solar-blind SnO2 nanowire photodetectors assembled using optical tweezers

期刊

NANOSCALE
卷 11, 期 5, 页码 2162-2169

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr07382a

关键词

-

资金

  1. National Natural Science Foundation of China [61306085, 11674401, 11334014]
  2. Hunan Provincial Natural Science Foundation of China [2018JJ3679]
  3. National Science Foundation [CBET-1437656]
  4. Fundamental Research Funds for the Central Universities of Central South University [2018zzts334]

向作者/读者索取更多资源

One-dimensional semiconducting SnO2 nanowires with wide bandgaps are promising candidates to build many important optoelectronic devices. Because building these devices involves the assembly of nanowires into complex structures, manipulation of the active materials needs to be done with high spatial precision. In this paper, an optical tweezer system, comprising a spatial light-modulator, a microscope, and optical elements, is used to individually trap, transfer, and assemble SnO2 nanowires into two-terminal photodetectors in a liquid environment. After the assembly using optical trapping, the two ends of the SnO2 nanowire photodetectors, which are connected with the electrodes, were further stabilized using a focused laser. During exposure to 275 nm deep-ultraviolet light, the as-assembled photodetectors show a high Iph/Idark ratio of 2.99 x 10(5), a large responsivity of 4.3 x 10(4) A W-1, an excellent external quantum efficiency of 1.94 x 10(5), and a high detectivity of 2.32 x 10(13) Jones. The photoresponse-speed of the devices could be improved further using passivation with a polymer. The rise and decay times are about 60 ms and 100 ms, respectively. As a result of this study, we can confirm that non-contact optical trapping can enable the construction of nanowire architectures for optoelectronic, bioelectronic, and other devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据