4.6 Article

Deformable Cardiovascular Image Registration via multi-Channel Convolutional Neural Network

期刊

IEEE ACCESS
卷 7, 期 -, 页码 17524-17534

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2894943

关键词

2D/3D Registration; convolutional neural network; multi channel; periodic variation model; vascular deformation

资金

  1. National Science Foundation of China [61533016, 61873010]

向作者/读者索取更多资源

Vascular image registration is an essential approach to combine the advantages of preoperative 3D computed tomography angiography images and intraoperative 2D X-ray/digital subtraction angiography (DSA) images together. Cardiovascular deformation caused by heartbeat and respiration is one of the most vital factors that affect vascular image registration accuracy. Traditional optimized-based registration methods suffer severely from high computational complexity, which hinders the clinical applications of these methods seriously. To overcome these challenges, we developed a novel multi-channel convolutional neural network (MCNN) that combines a CNN with a periodic vascular diameter variation model. Our method is capable of registering simulated DSA images or real DSA images with their corresponding 3D models in a matter of milliseconds. Our presented MCNN model achieves excellent registration results of three different kinds of cardiovascular patients. The mean absolute error of all six transformation parameters of the MCNN model presented in this paper is less than 1 mm or 1r. The improvement to our MCNN model in registration accuracy is larger than 75% over a single-channel CNN model. Our MCNN method performs more effectively and stable than the state-of-the-art intensity-based methods, especially when vascular deformations occur.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据