4.7 Article

Radiation adaptive response and cancer: From the statistical physics point of view

期刊

PHYSICAL REVIEW E
卷 99, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.022139

关键词

-

向作者/读者索取更多资源

Elements of statistical physics formalism were applied to mutagenic and carcinogenic processes associated with cellular DNA; these are lesion (damage) creation, mutation creation, and cellular neoplastic (cancer) transformation. The probabilities of all state changes were strictly related to potential barrier heights between energetic states of DNA molecules. Barriers can be modified when radiation adaptive response mechanisms are applied, which are associated with a radiobiological quantity called radiosensitivity. It was discussed that radiosensitivity is determined by the cell's response to radiation resulting in three potential dose-response scenarios: linear, threshold, or hormetic. The type of dose-response is of critical importance in the development of radiation protection standards and individual radiation risk assessment. It is shown that the different scenarios describe different limits of the same underlying phenomena and the cell can respond in a linear, threshold, or hormetic way regarding its radiosensitivity. Finally, the dissipative adaptation mechanism is discussed in the context of proliferating cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据