4.6 Article

Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning

期刊

PHYSICAL REVIEW B
卷 99, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.064114

关键词

-

资金

  1. Russian Science Foundation [18-13-00479, 16-13-10459]
  2. U.S. Department of Energy (DOE) Office of Science [DE-AC52-06NA25396]
  3. Sandia National Laboratories [DE-NA-0003525]
  4. Russian Science Foundation [18-13-00479] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

We propose a methodology for crystal structure prediction that is based on the evolutionary algorithm USPEX and the machine-learning interatomic potentials actively learning on-the-fly. Our methodology allows for an automated construction of an interatomic interaction model from scratch, replacing the expensive density functional theory (DFT) and giving a speedup of several orders of magnitude. Predicted low-energy structures are then tested on DFT, ensuring that our machine-learning model does not introduce any prediction error. We tested our methodology on prediction of crystal structures of carbon, high-pressure phases of sodium, and boron allotropes, including those that have more than 100 atoms in the primitive cell. All the the main allotropes have been reproduced, and a hitherto unknown 54-atom structure of boron has been predicted with very modest computational effort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据