4.6 Article

Highly compact, free- standing porous electrodes from polymer- derived nanoporous carbons for efficient electrochemical capacitive deionization

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 4, 页码 1768-1778

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta10268f

关键词

-

资金

  1. Jacob School of Engineering at UC San Diego
  2. Vanderbilt University School of Engineering

向作者/读者索取更多资源

Electrochemical capacitive deionization (CDI) is a promising technology for distributed and energy-efficient water desalination. The development of high-performance, low-cost capacitive electrodes is critical for enhancing CDI performance and scaling up its applications. Here, we report a novel design of highly compact, free-standing nanoporous carbon film electrodes for high-performance CDI. Such porous electrodes are fabricated by slip-roll compressing polypyrrole (PPy)-derived activated microporous carbon particles (PPy-AMC) with a small amount of polymer binder (5 wt%). The unique PPy-AMCs are synthesized from a rigid polymer precursor using a scalable carbonization-activation process, which is adopted in the manufacturing of commercial activated carbons. With small and uniform particle size, large specific surface area and short diffusion length, the PPy-AMC-based compact carbon electrodes offer very high salt adsorption capacity and enable very fast desalination, which significantly outperforms the state-of-the-art porous carbon-based CDI electrodes. This work provides an important strategy to design and fabricate compact yet porous carbon electrodes for efficient water desalinization and can be potentially extended to other applications such as energy storage and conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据