4.8 Article

Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 12, 期 2, 页码 727-738

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ee02679c

关键词

-

资金

  1. National Research Foundation of Korea (NRF) [2017R1A2B3006941]
  2. Creative Materials Discovery Program through the NRF - Ministry of Science and ICT [2018M3D1A1057844]
  3. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [NRF-2018R1A2B6006320]

向作者/读者索取更多资源

Advanced Zn-air batteries (ZABs) with ultrahigh cycle life, which also harness energy with bifunctional electrochemical reactions, are significantly challenging for the commercialization of hybrid/electric vehicles and wearable electronics. Herein, we demonstrated robust aqueous and flexible ZABs with novel three-dimensional dual-linked hexaiminobenzene metal-organic framework (Mn/Fe-HIB-MOF)-based bifunctional oxygen electrocatalysts and superionic functionalized bio-cellulose electrolytes (64 mS cm(-1)). The well-defined quintet-shelled hollow sphere MOFs possess a hierarchical porous structure, excellent packing density with a surface area of 2298 m(2) g(-1), and chemical stability as compared to conventional MOFs. Mn/Fe-HIB-MOF exhibited superior bifunctional oxygen electrocatalytic activity (0.627 V) with half-wave potential (0.883 V) for oxygen reduction and overpotential (280 mV@10 mA cm(-2)) for oxygen evolution reactions, outperforming commercial Pt/C and RuO2. Their favorable oxygen reactions and surface electronic structures were confirmed by density functional theory. Significantly, the Mn/Fe-HIB-MOF cathode demonstrated the highest lifetimes reported to date for rechargeable ZABs, namely 1000 h (0.75 V voltage gap@10 mA cm(-2)) over 6000 cycles and 600 h (efficiency approximate to 65.24%@25 mA cm(-2)) over 3600 cycles with excellent flexibility for liquid and all-solid-state flexible ZABs, respectively. These promising results illustrate the great potential of these novel hexaiminobenzene MOFs and superionic bio-cellulose membranes for the commercial implementation of rechargeable ZABs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据