4.7 Article

Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling

出版社

ELSEVIER INC
DOI: 10.1016/j.jcmgh.2018.09.006

关键词

Interleukin 22; Enteroid; Intestinal Stem Cell; Transit-Amplifying Cell; Regeneration; wnt; notch; tight junction; claudin-2

资金

  1. National Natural Science Foundation of China [81470804, 31401229, 81200620, 81570125]
  2. Natural Science Foundation of Jiangsu Province [BK20140319]
  3. Research Innovation Program for College Graduates of Jiangsu Province [KYLX16-0116, KYCX17-2033]
  4. Soochow University [SDY2015B06]
  5. Crohn's AMP
  6. Colitis Foundation Research Fellowship Award [310801]
  7. National Institute of Diabetes and Digestive and Kidney Diseases [R01DK061931, R01DK068271, F30DK103511]
  8. Harvard Digestive Disease Center [P30DK034854]
  9. International Joint Research Center for Genomic Resources [2017B01012]

向作者/读者索取更多资源

BACKGROUND & AIMS: Epithelial regeneration is essential for homeostasis and repair of the mucosal barrier. In the context of infectious and immune-mediated intestinal disease, interleukin (IL) 22 is thought to augment these processes. We sought to define the mechanisms by which IL22 promotes mucosal healing. METHODS: Intestinal stem cell cultures and mice were treated with recombinant IL22. Cell proliferation, death, and differentiation were assessed in vitro and in vivo by morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry. RESULTS: IL22 increased the size and number of proliferating cells within enteroids but decreased the total number of enteroids. Enteroid size increases required IL22-dependent upregulation of the tight junction cation and water channel claudin-2, indicating that enteroid enlargement reflected paracellular flux-induced swelling. However, claudin-2 did not contribute to IL22-dependent enteroid loss, depletion of Lgr5(+) stem cells, or increased epithelial proliferation. IL22 induced stem cell apoptosis but, conversely, enhanced proliferation within and expanded numbers of transit-amplifying cells. These changes were associated with reduced wnt and notch signaling, both in vitro and in vivo, as well as skewing of epithelial differentiation, with increases in Paneth cells and reduced numbers of enteroendocrine cells. CONCLUSIONS: IL22 promotes transit-amplifying cell proliferation but reduces Lgr5(+) stem cell survival by inhibiting notch and wnt signaling. IL22 can therefore promote or inhibit mucosal repair, depending on whether effects on transit-amplifying or stem cells predominate. These data may explain why mucosal healing is difficult to achieve in some inflammatory bowel disease patients despite markedly elevated IL22 production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据