4.6 Article

Investigating the In Vivo Antimicrobial Activity of a Self-Assembling Peptide Hydrogel Using a Galleria mellonella Infection Model

期刊

ACS OMEGA
卷 4, 期 2, 页码 2584-2589

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b03578

关键词

-

向作者/读者索取更多资源

Technological advances in protein biochemistry now enable researchers to modify the structure of peptides to enable them to possess self-assembling properties, forming hydrogels at low concentrations. Peptides can be altered further to provide multifunctional characteristics, for example, to demonstrate antimicrobial properties. The aim of this article is to investigate the in vivo toxicity and antimicrobial properties of a low molecular weight (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFKK-OH) peptide hydrogel using an innovative waxworm (Galleria mellonella) model, as an alternative to mammalian/vertebrate testing. NapFFKK-OH hydrogels did not demonstrate any observable in vivo toxicity or death in G. mellonella larvae over 5 days at concentrations studied (<= 2% w/v). A dose-dependent log(10) reduction in viable (CFU/mL) Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria implicated in nosocomial infections was observed over 72 h. NapFFKK-OH was especially effective against in vivo infection models of S. aureus with a significant 4.4 log(10) CFU/mL reduction in viable bacteria at 2% w/v after 72 h. Our results show G. mellonella to be a useful model for preliminary determination of in vivo toxicity and antimicrobial efficacy profiles of novel nanomaterials, including peptide-based hydrogels. This contributes to the 3R principles of animal testing, reduction, refinement, and replacement. The results also show NapFFKK-OH to be a promising alternative to standardly employed antimicrobials with the potential to be utilized as a novel therapeutic in the treatment and prevention of hospital infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据