4.6 Article

Phase Variation of Streptococcus pneumoniae

期刊

MICROBIOLOGY SPECTRUM
卷 7, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/microbiolspec.GPP3-0005-2018

关键词

-

资金

  1. National Natural Science Foundation of China [31530082, 81671972, 31728002, 31820103001]
  2. Ministry of Science and Technology [2012CB518700]
  3. Bill and Melinda Gates Foundation
  4. Tsinghua University Research Initiative Program [2011Z23153]

向作者/读者索取更多资源

Streptococcus pneumoniae undergoes phase variation or spontaneous, reversible phenotypic variation in colony opacity, encapsulation, and pilus expression. The variation in colony opacity appears to occur in all strains, whereas the switches in the production of the capsule and pilus have been observed in several strains. This chapter elaborates on the variation in colony opacity since this phenomenon has been extensively characterized. S. pneumoniae produces opaque and transparent colonies on the translucent agar medium. The different colony phases are fundamentally distinct phenotypes in their metabolism and multiple characteristics, as exemplified by cell surface features and phenotypes in colonization and virulence. Opaque variants, which express more capsular polysaccharides and fewer teichoic acids, are more virulent in animal models of sepsis but colonize the nasopharynx poorly. In contrast, transparent variants, with fewer capsular polysaccharides and more teichoic acid, colonize the nasopharynx in animal models more efficiently but are relatively avirulent. Lastly, pneumococcal opacity variants are generated by differential methylation of the genome DNA variation. The reversible switch in the methylation pattern is caused by DNA inversions in three homologous hsdS genes of the colony opacity determinant (cod) or SpnD39III locus, a conserved type I restriction-modification (RM) system. The hsdS gene encodes the sequence recognition subunit of the type I RM DNA methyltransferase. The combination of DNA inversion and differential methylation, a complex mechanism of phase variation, generates a mixed population that may allow for the selection of organisms in vivo with characteristics permissive for either carriage or systemic infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据