4.5 Article

Nonlinear convective stratified flow of Maxwell nanofluid with activation energy

期刊

HELIYON
卷 5, 期 1, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2019.e01121

关键词

Applied mathematics; Computational mathematics; Mechanics

向作者/读者索取更多资源

The aim of present article is to explore the novel aspects of activation energy in nonlinearly convective flow of Maxwell nanofluid driven by nonlinearly stretched inclined cylinder. Generalized forms of Fourier's and Fick's law are utilized through Cattaneo-Christov double diffusion scheme. Maxwell nanomaterial model is used to describe the significant slip mechanism namely known as Brownian and thermophoresis diffusions. Features of double stratification, non-uniform heat generation/absorption, binary chemical reaction and activation energy are considered for present flow problem. Modified Arrhenius formula for activation energy is implemented. The resulting nonlinear system is cracked for series solutions via homotopy technique. Effects of different flow parameters on temperature, nanoparticle volume concentration and velocity fields are examined through graphs and tables. Numerical computations are performed for local Nusselt and Sherwood numbers. Our analysis reveals that nanoparticle concentration is directly proportional to the chemical reaction with activation energy. Moreover stratification variables diminish the temperature and concentration. It is also noticed that higher estimation of Deborah number declines the velocity profile of Maxwell fluid. Numerical outcomes are compared with previous published results and found to be in good agreement for limiting cases of the evolving parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据