4.4 Article

Downregulation of TRPM7 suppressed migration and invasion by regulating epithelial-mesenchymal transition in prostate cancer cells

期刊

MEDICAL ONCOLOGY
卷 34, 期 7, 页码 -

出版社

HUMANA PRESS INC
DOI: 10.1007/s12032-017-0987-1

关键词

Prostate cancer; TRPM7; MMP-2; MMP-9; Migration; Invasion

类别

资金

  1. Zhongnan Hospital of Wuhan University Science, Technology and Innovation [cxpy20160018]
  2. Hubei Province Health and Family Planning Scientific Research Project [WJ2017H0002]

向作者/读者索取更多资源

Metastasis is a leading cause of death in patients with prostate cancer (PCa). Transient receptor potential channel 7 (TRPM7) functions as a Mg2+/Ca2+-permeable channel as well as a protein kinase that regulate various cellular processes including cell adhesion, migration and survival. However, the function of TRPM7 in metastasis of PCa remains largely unknown. Microarray analysis suggested that calcium signaling pathway was significantly altered in metastatic PCa tissues, compared with benign prostatic hyperplasia tissues. Bioinformatics analysis using microarray data and database for annotation, visualization and integrated discovery database revealed altered genes involved in calcium signaling pathway were significantly upregulated in TRPM7 deficiency PCa cells, which was also confirmed by experimental verification. Therefore, we aim to investigate the role of TRPM7 in human PCa cell migration and invasion as well as the underlying mechanisms. We observed that TRPM7 was upregulated in PCa cells and tissues compared with prostate hyperplasia cells and tissues. Further investigations suggested that TRPM7 deficiency suppressed migration and invasion of distinct PCa cell lines while overexpression of TRPM7 increased migration of PCa cells. In addition, knockdown of TRPM7 in PCa cells reversed the epithelial-mesenchymal transition (EMT) status, accompanied by downregulation of MMPs and upregulation of E-cadherin. Taken together, our study indicated that downregulation of TRPM7 could inhibit migration and invasion via reversing EMT status in PCa cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据