4.7 Article

Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution

期刊

COMMUNICATIONS BIOLOGY
卷 2, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s42003-019-0317-6

关键词

-

资金

  1. Medical Research Council [MR/K015591/1, MR/N020103/1]
  2. MRC [MR/N020103/1, MC_EX_MR/K015591/1] Funding Source: UKRI

向作者/读者索取更多资源

Super-resolution fluorescence microscopy plays a crucial role in our understanding of cell structure and function by reporting cellular ultrastructure with 20-30 nm resolution. However, this resolution is insufficient to image macro-molecular machinery at work. A path to improve resolution is to image under cryogenic conditions. This substantially increases the brightness of most fluorophores and preserves native ultrastructure much better than chemical fixation. Cryogenic conditions are, however, underutilised because of the lack of compatible high numerical aperture objectives. Here, using a low-cost super-hemispherical solid immersion lens (superSIL) and a basic set-up we achieve 12 nm resolution under cryogenic conditions, to our knowledge the best yet attained in cells using simple set-ups and/or commercial systems. By also allowing multicolour imaging, and by paving the way to total-internal-reflection fluorescence imaging of mammalian cells under cryogenic conditions, superSIL microscopy opens a straightforward route to achieve unmatched resolution on bacterial and mammalian cell samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据