4.7 Article

Development of a Polymer-Mediated Soybean Nanocomposite by Hot Melt Extrusion to Improve Its Functionality and Antioxidant Properties

期刊

FOODS
卷 8, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/foods8020041

关键词

hot melt extrusion; polymer; isoflavones; phenolic content; solubility; bioaccessibility

资金

  1. Kangwon National University
  2. Institute of Bioscience and Biotechnology, Republic of Korea

向作者/读者索取更多资源

The poor bioaccessibility of the phenolic compounds of soybeans is a key challenge to developing functional food products. Therefore, a novel hydrophilic food-grade hydroxypropyl methylcellulose (HPMC) polymer was added to soybean to prepare a soybean food composite (SFC), in order to improve the soybean's functionality. The SFC was prepared with soybean (95%) plus HPMC (5%) (w/w) mixes (HSE), as well as 100% soybean extrudate (SE), at 80 degrees C and 130 degrees C by a hot melt extrusion (HME) process. A non-extrudate 100% soybean material was considered as a control. It is observed that water solubility was significantly increased (35.18%), and particle size reached to nano-size (171.5 nm) in HSE at 130 degrees C compared to the control (7.14% and 1166 nm, respectively). The total phenolic, flavonoid, and single isoflavones content, including daidzin, daidzein, glycitein, genistein, and genistin was significantly increased in HSE at 130 degrees C compared to the control. The antioxidant properties were also significantly increased in HSE at 130 degrees C compared to the control, measured by 2,2-diphenyl-1 picryl hydrazyl (DPPH), a ferric reducing antioxidant power assay (FRAP), and the phosphomolybdenum method (PPMD). Finally, it is concluded that the HPMC polymer could be used as a novel excipient to develop nanocomposite via HME, in order to improve the functionality of soybean food products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据