4.4 Article

Dynamic assessment of center of pressure measurements from an instrumented AMTI treadmill with controlled precision

期刊

MEDICAL ENGINEERING & PHYSICS
卷 42, 期 -, 页码 99-104

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2017.01.002

关键词

Biomechanics; Kinetics; Force platforms; Validation; Accuracy

资金

  1. DOD [DM090896]
  2. NIH [T32 HD07447]

向作者/读者索取更多资源

With the increasing use of instrumented force treadmills in biomechanical research, it is imperative that the validity of center of pressure (COP) measurements is established. The study aims were to compare an instrumented treadmill's static-belt COP accuracy to that of a floor-embedded platform, develop a novel method to quantify dynamic-belt COP accuracy with controlled precision and perform an initial investigation of how dynamic COP accuracy changes with weight and velocity. Static COP accuracy was assessed by applying a force while moving a rigid rod in a circular clockwise motion at nine positions of interest on the two treadmill and two ground-embedded force plates. Dynamic COP accuracy was assessed for weights (68.0, 102.1, and 136.1 kg), applied through a ball bearing of 2.54 cm circumference, with peak treadmill belt speeds of 0.5, 0.75, and 1.0 m/s. COP accuracy was assessed relative to motion capture marker trajectories. Statically, treadmill COP error was similar to that of the ground-embedded force plates and that reported for other treadmills. Dynamically, COP error appeared to vary systematically with weight and velocity and in the case of anteroposterior COP error, shear force, although testing with a larger number of weights and velocities is needed to fully define the relationship. This novel method can be used to assess any instrumented treadmill's dynamic COP accuracy with controlled precision. (C) 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据