4.7 Article

Sublethal copper toxicity impairs chemical orientation in the crayfish, Orconectes rusticus

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 113, 期 -, 页码 369-377

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2014.12.022

关键词

Sublethal toxicity; Copper; Orientation; Orconectes rusticus; Crayfish

资金

  1. Oman Graduate Research in Ecology and Environmental Biology Scholarship

向作者/读者索取更多资源

Before reaching concentrations that are high enough to cause mortality, elevated levels of chemical pollution can significantly alter a keystone indicator species' ability to extract sensory information. To organisms that rely on chemical signals to make crucial ecological decisions, increased amounts of a pollutant may impact chemoreceptive abilities by altering the perception of the sensory landscape or impairing the functioning of sensory organs. Heavy metal pollutants entering an aquatic ecosystem are of increasing concern due to discernible effects on chemoreception in many ecologically and economically important species. In order to determine the effects of sublethal copper toxicity on chemically mediated behavior, male and female rusty crayfish, Orconectes rusticus, were exposed to ecologically relevant concentrations of copper (4.5, 45, and 450 mu g/l) for 120 h. Following exposure, crayfish were allowed to orient toward a food odor stimulus. During orientation trials, select crayfish oriented under a point or nonpoint source copper background pollutant at the same concentration as the exposure period. Orientation trials were videotaped and analyzed using EthoVision XT 8.5 (Noldus Information Technology, The Netherlands) for differences in overall success in locating the food source and orienting parameters. Significant differences were found in the overall orientation ability of O. rusticus to locate an odor source when previously exposed to copper in combination with a source of pollution in the background of orientation trials: Crayfish exposed to copper in any capacity during the experiment (regardless of concentration or background during trials) showed slower walking speeds toward the source, decreased turning angles, increased heading angles toward the source, and decreased upstream heading angles. Results from this experiment support that copper impairs the ability of crayfish to detect, process, and/or respond appropriately to chemosensory information in order to successfully localize a food odor source. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据