4.6 Article

Mitigating the P2-O2 phase transition of high-voltage P2-Na2/3[Ni1/3Mn2/3]O2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 7, 期 9, 页码 4705-4713

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta10980j

关键词

-

资金

  1. Natural Science Foundation of Shandong Province [ZR2017BEM010, ZR2016JL015]
  2. National Natural Science Foundation of China [51672109]

向作者/读者索取更多资源

High-voltage P2-Na-2/3[Ni1/3Mn2/3]O-2 as a high energy density cathode for sodium-ion batteries (SIBs) has attracted considerable attention. But the unfavorable P2-O2 phase transition and electrode/electrolyte side reactions easily occur when charged above 4.2 V (vs. Na/Na+), resulting in the rapid decay of capacity. Here, for the first time, a nanoscale cobalt gradient substitution is introduced to build a Co-enriched surface and cobalt-substituted interior, in which the cobalt-enriched surface is expected to reduce the side reactions and improve the Na+ kinetics while the cobalt substitution is supposed to mitigate the P2-O2 transition. Correspondingly, this gradient cobalt substituted P2-Na-2/3[Ni1/3Mn2/3]O-2 delivers a large reversible capacity of 164.6 mA h g(-1) with a high median potential of 3.55 V, achieving a high energy density of approximate to 585 W h kg(-1) and is comparable to the LiCoO2 cathode in lithium-ion batteries. As anticipated, it shows a mitigated P2-O2 transition and thus exhibits an improved cycling stability. Besides, it delivers a much higher capacity of 110 mA h g(-1) at a high rate of 10C than reported pristine and modified electrodes by bulk doping and surface coating, indicating better high-rate properties. These gratifying achievements make this nanoscale gradient substitution an effective approach for suppressing the P2-O2 transition and improving the Na+ kinetics of P2-Na-2/3[Ni1/3Mn2/3]O-2 cathodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据