4.8 Article

Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes

期刊

CHEMICAL SCIENCE
卷 10, 期 10, 页码 3054-3064

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sc05456h

关键词

-

资金

  1. National Natural Science Foundation of China [21875036, 21805106]
  2. Natural Science Foundation of Jiangsu Province [BK20181073]
  3. Natural Science Fund for Colleges and Universities in Jiangsu Province [17KJB150007]
  4. Postdoctoral Science Foundation of China [1107040175]
  5. Science Foundation of Huaihai Institute of Technology [KQ16025, Z2016010]
  6. Science and Technology Bureau of Lianyungang [CG1602]

向作者/读者索取更多资源

Developing a solution-processible blue thermally activated delayed fluorescence (TADF) emitter for hybrid white organic light emitting diodes (WOLEDs) is still a challenge. In this work, two TADF blue emitters are designed and synthesized to explore a common strategy to qualify the small molecular TADF material as a solution-processible blue host. Systematic studies find that the molecular encapsulation by introducing unconjugated carbazoles as steric shields not only keeps the intrinsic TADF feature unchanged, but also effectively suppress the intermolecular interaction induced exciton quenching, which makes the material more efficient for solution-processing. The optimized solution-processed hybrid WOLEDs based on the encapsulated TADF blue host realized a highly efficient device performance with a maximum current efficiency (CE), power efficiency (PE) and external quantum efficiency (EQE) of 45.6 cd A(-1), 40.9 lm W-1 and 17.0%, respectively, which are three times higher in device efficiency and twenty times higher in device lifetime than the corresponding device with an unencapsulated TADF blue host. Furthermore, the obtained device exhibits a high electroluminescence (EL) above 20 000 cd m(-2) and a stable EL spectrum with nearly unchanged Commission International de L'Eclairage (CIE) coordinate at a wide range of applied voltages. These results clearly demonstrate that the molecular encapsulation of the TADF blue host is a superior and promising strategy to achieve high performance and color stable solution-processed hybrid WOLEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据