4.7 Article

Characteristic investigation of an electrochemical-thermal coupled model for a LiFePO4/Graphene hybrid cathode lithium-ion battery

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2018.100387

关键词

LiFePO4/Graphene; Lithium-ion battery; FLUENT; Electrochemical-thermal coupled model

资金

  1. Major Program of Natural Science Foundation of Inner Mongolia Autonomous Region, China [2017ZD02]
  2. Natural Science Foundation of Jiangsu Province, China [BK20140301]
  3. National Natural Science Foundation of China, China [11402156, 61503269]
  4. Research and Innovation Project of Postgraduate of Inner Mongolia Autonomous Region, China [B20171012803Z]

向作者/读者索取更多资源

It is a promising development strategy to use LiFePO4/Graphene (LFP/G) hybrid cathode lithium-ion batteries for electric vehicles (EVs), which can simultaneously solve issues of the lengthy charging time and the battery pack heat. To capture the characteristic regulation of the temperature distribution, the working voltage, the current density, and the total heat generation of the LFP/G battery, an electrochemical-thermal coupled model for the LFP/G battery was developed through a new modeling method in ANSYS FLUENT. The experimental results showed that tendencies of the temperature distribution and the working voltage were not only agreed well with simulations, but also accurately verified the hottest area of the LFP/G battery. Further studies used the comparative analyses of the maximal temperature between the LFP/G battery and the conventional LFP battery at different discharged C-rates, the results indicated that the LFP/G battery could restrain the increase of temperature through reduced contact resistances. Our results suggested that the electrochemical-thermal coupled model could be used for electric vehicles battery management system applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据