4.4 Article

Analysis of worm-like locomotion driven by the sine-squared strain wave in a linear viscous medium

期刊

MECHANICS RESEARCH COMMUNICATIONS
卷 85, 期 -, 页码 33-44

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechrescom.2017.07.006

关键词

Sine-square strain wave; Dynamic model; Viscous friction; Worm-like locomotion

资金

  1. National Natural Science Foundation of China [11572224]

向作者/读者索取更多资源

In this paper, a worm-like locomotion in a linear resistive medium is studied to achieve controlled shape changes of the worm-like body by choosing a kind of driving with low energy expended and high-velocity locomotion in certain condition. To this end, we first develop the full dynamic model of the system under consideration to obtain the mean velocity related to friction coefficient, wave speed, linear density, body length and wave width. Correspondingly, a quasi-static model is also given from which the velocity can be expressed analytically. In the case of the shape change driven by the sine-squared strain wave (SSSW), it is seen that these two velocities will tend to uniformity with the friction coefficient or length of the body increasing or the wave speed decreasing when keeping the other parameters unchanged. Thus, the inertia term is ignorable for a large friction, a long body-length but a small wave-speed of the SSSW, which implies that the dynamical model can be reduced to the quasi-static one. The relative criterion is approximately given. As a result, the corresponding quasi-static model is employed to consider two typical drives, namely, the SSSW and the square strain wave (SSW). The result shows the shape change driven by the SSSW has an advantage in both the mean velocity and the average energy expended over that by the SSW when the necessary condition is satisfied. The analytical results are verified by numerical simulation. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据